Title
A complex systems science perspective on wireless networks.
Abstract
The paper targets a future world where all wireless networks are self-organising entities and in which the predominant mode of spectrum access is dynamic. The paper explores whether the behaviour of a collection of autonomous self-organising wireless systems can be treated as a complex system and whether complex systems science can shed light on the design and deployment of these networks. The authors focus on networks that self-organise from a frequency perspective to understand the behaviour of a collection of wireless self-organising nodes. Each autonomous network is modelled as a cell in a lattice and follows a simple set of self-organisation rules. Two scenarios are considered, one in which each cell is based on cellular automata and which provides an abstracted view of interference and a second in which each cell uses a self-organising technique which more accurately accounts for interference. The authors use excess entropy to measure complexity and in combination with entropy gain an understanding of the structure emerging in the lattice for the self-organising networks. The authors show that the self-organising systems presented here do exhibit complex behaviour. Finally, the authors look at the robustness of these complex systems and show that they are robust against changes in the environment.
Year
DOI
Venue
2016
10.1007/s11424-016-4122-8
J. Systems Science & Complexity
Keywords
Field
DocType
Dynamic spectrum access, excess entropy, robustness, self organising wireless networks
Complex system,Cellular automaton,Wireless network,Mathematical optimization,Wireless,Software deployment,Computer science,Robustness (computer science),Artificial intelligence,Interference (wave propagation),Distributed computing
Journal
Volume
Issue
ISSN
29
4
1559-7067
Citations 
PageRank 
References 
2
0.41
11
Authors
4
Name
Order
Citations
PageRank
Irene Macaluso111922.24
Carlo Galiotto2385.48
N. Marchetti3719.94
Linda E. Doyle430434.70