Title
Exploring Protein Stability by Comparative Molecular Dynamics Simulations of Homologous Hyperthermophilic, Mesophilic, and Psychrophilic Proteins.
Abstract
In the present studies, we analyzed the influence of temperature on the stability and dynamics of the a subunit of tryptophan synthase (TRPS) from hyper-thermophilic, mesophilic, and psychrophilic homologues at different temperatures by molecular dynamics simulations. Employing different indicators such as root-mean-square deviations, root-mean-square fluctuations, principal component analysis, and free energy landscapes, this study manifests the diverse behavior of these homologues with changes in temperature. Especially, an enhancement in the collective motions, classified as representative motions, is observed at high temperature. Similarly, the criterion for the selection of electrostatic interactions in terms of their life span (duty cycle) has indeed helped in identifying the short- and long-lived electrostatic interactions and how they affect the protein's overall stability at different temperatures. Rigidity and flexibility patterns of the homologous proteins are examined using FIRST software along with the calculation of duty cycles with various threshold limits at different temperatures. Rigid cluster decomposition in TRPS of psychrophilic, mesophilic, and hyperthermophilic origin identifies the flexible and rigid regions in the protein. Early loss of rigidity is observed in mesophilic TRPS via loss of contact between the major fragments of the protein compared with the other homologues. In spite of the high similarity of their three-dimensional structures, the overall responses of the three proteins to varying temperatures are significantly different.
Year
DOI
Venue
2016
10.1021/acs.jcim.6b00305
JOURNAL OF CHEMICAL INFORMATION AND MODELING
Field
DocType
Volume
Electrostatics,Protein stability,Tryptophan synthase,Chemistry,Protein superfamily,Psychrophile,Molecular dynamics,Mesophile,Bioinformatics,Protein subunit
Journal
56
Issue
ISSN
Citations 
11
1549-9596
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Sara Khan100.34
Umar Farooq215839.11
Maria Kurnikova3101.33