Title
Assembly Technologies For Integrated Transmitter/Receiver Optical Sub-Assembly Modules
Abstract
We have succeeded in developing three techniques, a precise lens-alignment technique, low-loss built-in Spatial Multiplexing optics and a well-matched electrical connection for high-frequency signals, which are indispensable for realizing compact high-performance TOSAs and ROSAs employing hybrid integration technology. The lens position was controlled to within +/- 0.3 mu m by high-power laser irradiation. All components comprising the multiplexing optics are bonded to a prism, enabling the insertion loss to be held down to 0.8 dB due to the dimensional accuracy of the prism. The addition of an FPC layer reduced the impedance mismatch at the junction between the FPC and PCB. We demonstrated a compact integrated four-lane 25 Gb/s TOSA (15.1 mm x 6.5 mm x 5.6 mm) and ROSA (17.0 mm x 12.0 mm x 7.0 mm) using the built-in spatial Mux/Demux optics with good transmission performance for 100 Gb/s Ethernet. These are respectively suitable for the QSFP28 and CFP2 form factors.
Year
DOI
Venue
2017
10.1587/transele.E100.C.187
IEICE TRANSACTIONS ON ELECTRONICS
Keywords
Field
DocType
hybrid integration, optical sub-assembly, 100 Gb/s Ethernet
Transmitter,Computer science,Electrical engineering
Journal
Volume
Issue
ISSN
E100C
2
1745-1353
Citations 
PageRank 
References 
0
0.34
1
Authors
11