Title
LCL problems on grids.
Abstract
LCLs or locally checkable labelling problems (e.g. maximal independent set, maximal matching, and vertex colouring) in the LOCAL model of computation are very well-understood in cycles (toroidal 1-dimensional grids): every problem has a complexity of O(1), Θ(log* n), or Θ(n), and the design of optimal algorithms can be fully automated. This work develops the complexity theory of LCL problems for toroidal 2-dimensional grids. The complexity classes are the same as in the 1-dimensional case: O(1), Θ(log* n), and Θ(n). However, given an LCL problem it is undecidable whether its complexity is Θ(log* n) or Θ(n) in 2-dimensional grids. Nevertheless, if we correctly guess that the complexity of a problem is Θ(log* n), we can completely automate the design of optimal algorithms. For any problem we can find an algorithm that is of a normal form A' o Sk, where A' is a finite function, Sk is an algorithm for finding a maximal independent set in kth power of the grid, and k is a constant. Finally, partially with the help of automated design tools, we classify the complexity of several concrete LCL problems related to colourings and orientations.
Year
DOI
Venue
2017
10.1145/3087801.3087833
PODC
Keywords
DocType
Volume
distributed algorithms, LOCAL model, LCL problems, computational complexity, algorithm synthesis, graph colouring
Conference
abs/1702.05456
Citations 
PageRank 
References 
4
0.41
29
Authors
9