Title
Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions
Abstract
Single flux quantum (SFQ) circuits form a natural neuromorphic technology with SFQ pulses and superconducting transmission lines simulating action potentials and axons, respectively. Here we present a new component, magnetic Josephson junctions, that have a tunablility and re-configurability that was lacking from previous SFQ neuromorphic circuits. The nanoscale magnetic structure acts as a tunable synaptic constituent that modifies the junction critical current. These circuits can operate near the thermal limit where stochastic firing of the neurons is an essential component of the technology. This technology has the ability to create complex neural systems with greater than 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21</sup> neural firings per second with approximately 1 W dissipation.
Year
DOI
Venue
2016
10.1109/ICRC.2016.7738712
2016 IEEE International Conference on Rebooting Computing (ICRC)
Keywords
DocType
Volume
single flux quantum,neuromorphic,magnetic Josephson junctions
Conference
abs/1612.09292
ISBN
Citations 
PageRank 
978-1-5090-1371-5
0
0.34
References 
Authors
0
9
Name
Order
Citations
PageRank
S. E. Russek100.34
C. A. Donnelly200.34
Michael L. Schneider310.86
Burm Baek401.35
M. R. Pufall500.34
W. H. Rippard600.34
P. F. Hopkins700.34
Paul D. Dresselhaus89817.82
Samuel P. Benz910620.78