Title
Rigid formation control with nonlinear passive actuation.
Abstract
This paper presents a distributed control law that locally forces a group of agents to self-organize into a rigid formation specified by a subset of interagent distances. The control law presented here is distributed as its execution requires each agent to only sense its relative positions with its neighbors, i.e. agents with whom they share a specified desired distance, and its own velocity. The paper extends [13], [17], and [18]. In [13] each agent is modeled as a single integrator. On the other hand, [17] assumes double integrator dynamics but requires that agents can also sense the velocities of their neighbors, doubling the communication/sensing overhead. In [18] the agent velocities are generated by the actuation signals through a Linear Time Invariant Positive Real dynamics. Double integrator dynamics are a special case of this. Unlike [17] no agent needs its neighbor's velocities. This paper on its parts relaxes the assumption of linear time invariance and instead assumes that the actuation to velocity dynamics of each agent is nonlinear but passive. We prove that the control law of [18] still guarantees local stability despite the presence of nonlinear actuation dtnamics. We argue that, like [13], [17] and [18], no law for this problem can be globally stable.
Year
Venue
Field
2016
2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON)
LTI system theory,Nonlinear system,Invariant (physics),Double integrator,Control theory,Computer science,Integrator,Time complexity,Special case
DocType
ISSN
Citations 
Conference
2474-0195
0
PageRank 
References 
Authors
0.34
0
2
Name
Order
Citations
PageRank
Bradley W. Lan100.34
Soura Dasgupta267996.96