Title
Deep ADMM-Net for Compressive Sensing MRI.
Abstract
Compressive Sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR image from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and computational speed, in this paper, we propose a novel deep architecture, dubbed ADMM-Net. ADMM-Net is defined over a data flow graph, which is derived from the iterative procedures in Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing a CS-based MRI model. In the training phase, all parameters of the net, e.g., image transforms, shrinkage functions, etc., are discriminatively trained end-to-end using L-BFGS algorithm. In the testing phase, it has computational overhead similar to ADMM but uses optimized parameters learned from the training data for CS-based reconstruction task. Experiments on MRI image reconstruction under different sampling ratios in k-space demonstrate that it significantly improves the baseline ADMM algorithm and achieves high reconstruction accuracies with fast computational speed.
Year
Venue
Field
2016
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016)
Iterative reconstruction,Training set,Overhead (computing),Computer science,Data acquisition,Data-flow analysis,Artificial intelligence,Sampling (statistics),Compressed sensing,Machine learning,Magnetic resonance imaging
DocType
Volume
ISSN
Conference
29
1049-5258
Citations 
PageRank 
References 
14
0.49
0
Authors
4
Name
Order
Citations
PageRank
Yan Yang112122.47
Jian Sun283942.32
Huibin Li3633.79
Zongben Xu43203198.88