Title
Full-Duplex Wireless-Powered Relay in Two Way Cooperative Networks.
Abstract
This paper investigates a full duplex wireless-powered two way communication networks, where two hybrid access points (HAPs) and a number of amplify and forward relays both operate in full duplex scenario. We use time switching (TS) and static power splitting (SPS) schemes with two way full duplex wireless-powered networks as a benchmark. Then, the new time division duplexing static power splitting (IDD SPS) and the full duplex static power splitting (EDSPS) schemes as well as a simple relay selection strategy are proposed to improve the system performance. For TS, SPS, and EDSPS, the best relay harvests energy using the received RF signal from HAPs and uses harvested energy to transmit signal to each HAP at the same frequency and time, therefore only partial self-interference (SI) cancellation needs to be considered in the FDSPS case. For the proposed TDD SPS, the best relay harvests the energy from the HAP and its self-interference. Then, we derive closed-form expressions for the throughput and outage probability for delay limited transmissions over Rayleigh fading channels. Simulation results are presented to evaluate the effectiveness of the proposed scheme with different system key parameters, such as time allocation, power splitting ratio, and residual SI.
Year
DOI
Venue
2017
10.1109/ACCESS.2017.2661378
IEEE ACCESS
Keywords
Field
DocType
Energy harvesting,full duplex antenna,cooperative communications,throughput,relay selection
Rayleigh fading,Wireless,Computer science,Computer network,Communication channel,Energy harvesting,Radio frequency,Throughput,Relay,Duplex (telecommunications)
Journal
Volume
ISSN
Citations 
5
2169-3536
9
PageRank 
References 
Authors
0.51
23
5
Name
Order
Citations
PageRank
Gaojie Chen141241.13
Pei Xiao245756.00
James R. Kelly3102.00
Bing Li490.51
R. Tafazolli52969346.10