Title
Cheshire: An Online Algorithm for Activity Maximization in Social Networks.
Abstract
User engagement in social networks depends critically on the number of online actions their users take in the network. Can we design an algorithm that finds when to incentivize users to take actions to maximize the overall activity in a social network? In this paper, we model the number of online actions over time using multidimensional Hawkes processes, derive an alternate representation of these processes based on stochastic differential equations (SDEs) with jumps and, exploiting this alternate representation, address the above question from the perspective of stochastic optimal control of SDEs with jumps. We find that the optimal level of incentivized actions depends linearly on the current level of overall actions. Moreover, the coefficients of this linear relationship can be found by solving a matrix Riccati differential equation, which can be solved efficiently, and a first order differential equation, which has a closed form solution. As a result, we are able to design an efficient online algorithm, Cheshire, to sample the optimal times of the usersu0027 incentivized actions. Experiments on both synthetic and real data gathered from Twitter show that our algorithm is able to consistently maximize the number of online actions more effectively than the state of the art.
Year
Venue
Field
2017
arXiv: Machine Learning
Online algorithm,Mathematical optimization,Social network,Ordinary differential equation,User engagement,Closed-form expression,Stochastic differential equation,Artificial intelligence,Maximization,Mathematics,Machine learning,Stochastic control
DocType
Volume
Citations 
Journal
abs/1703.02059
3
PageRank 
References 
Authors
0.39
0
4
Name
Order
Citations
PageRank
ali zarezade1192.71
Abir De27515.05
Hamid R. Rabiee333641.77
Manuel Gomez-Rodriguez4119860.07