Title
Homomorphisms Are a Good Basis for Counting Small Subgraphs.
Abstract
We introduce graph motif parameters, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by Lovász show that many interesting quantities have this form, including, for fixed graphs H, the number of H-copies (induced or not) in an input graph G, and the number of homomorphisms from H to G. We use the framework of graph motif parameters to obtain faster algorithms for counting subgraph copies of fixed graphs H in host graphs G. More precisely, for graphs H on k edges, we show how to count subgraph copies of H in time kO(k)· n0.174k + o(k) by a surprisingly simple algorithm. This improves upon previously known running times, such as O(n0.91k + c) time for k-edge matchings or O(n0.46k + c) time for k-cycles. Furthermore, we prove a general complexity dichotomy for evaluating graph motif parameters: Given a class C of such parameters, we consider the problem of evaluating f∈ C on input graphs G, parameterized by the number of induced subgraphs that f depends upon. For every recursively enumerable class C, we prove the above problem to be either FPT or #W[1]-hard, with an explicit dichotomy criterion. This allows us to recover known dichotomies for counting subgraphs, induced subgraphs, and homomorphisms in a uniform and simplified way, together with improved lower bounds. Finally, we extend graph motif parameters to colored subgraphs and prove a complexity trichotomy: For vertex-colored graphs H and G, where H is from a fixed class of graphs, we want to count color-preserving H-copies in G. We show that this problem is either polynomial-time solvable or FPT or #W[1]-hard, and that the FPT cases indeed need FPT time under reasonable assumptions.
Year
DOI
Venue
2017
10.1145/3055399.3055502
STOC
Keywords
DocType
Volume
counting subgraphs,homomorphisms,fixed-parameter tractability,exponential time hypothesis
Conference
abs/1705.01595
ISSN
Citations 
PageRank 
0737-8017
8
0.54
References 
Authors
35
3
Name
Order
Citations
PageRank
Radu Curticapean1708.75
Holger Dell222016.74
Dániel Marx31952113.07