Title
A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior.
Abstract
Soft compliant materials and novel actuation mechanisms ensure flexible motions and high adaptability for soft robots, but also increase the difficulty and complexity of constructing control systems. In this work, we provide an efficient control algorithm for a multi-segment extensible soft arm in 2D plane. The algorithm separate the inverse kinematics into two levels. The first level employs gradient descent to select optimized armu0027s pose (from task space to configuration space) according to designed cost functions. With consideration of viscoelasticity, the second level utilizes neural networks to figure out the pressures from each segmentu0027s pose (from configuration space to actuation space). In experiments with a physical prototype, the control accuracy and effectiveness are validated, where the control algorithm is further improved by an optional feedback strategy.
Year
DOI
Venue
2017
10.1109/ICRA.2017.7989727
ICRA
Field
DocType
Volume
Gradient descent,Algorithm design,Kinematics,Inverse kinematics,Control theory,Control engineering,Engineering,Control system,Robot,Artificial neural network,Configuration space
Conference
2017
Issue
Citations 
PageRank 
1
0
0.34
References 
Authors
7
7
Name
Order
Citations
PageRank
Hao Jiang1498.68
Zhanchi Wang201.35
Xinghua Liu37614.84
Xiaotong Chen403.72
Yusong Jin501.35
Xuanke You621.38
Xiaoping Chen737152.94