Title
Numerical Solution of Thermoporoelasticity Problems.
Abstract
We consider the numerical solution of thermoporoelasticity problems. The basic system of equations includes the Lame equation for the displacement and two nonstationary equations for the fluid pressure and temperature. The computational algorithm is based on the finite element approximation in space and the finite difference approximation in time. We construct standard implicit scheme and unconditionally stable splitting schemes with respect to physical processes, when the transition to a new time level is associated with solving separate sub-problems for the desired displacement, pressure, and temperature. The stability of the scheme is achieved by passing to three-level difference scheme and by choosing a weight used as a regularization parameter. We provide the stability condition of the splitting scheme and present numerical experiments supporting this condition.
Year
DOI
Venue
2016
10.1007/978-3-319-57099-0_47
Lecture Notes in Computer Science
Field
DocType
Volume
Applied mathematics,Bilinear form,System of linear equations,Finite difference,Temperature Increment,Fluid pressure,Finite element method,Regularization (mathematics),Mathematics
Conference
10187
ISSN
Citations 
PageRank 
0302-9743
0
0.34
References 
Authors
0
2
Name
Order
Citations
PageRank
Alexandr E. Kolesov100.68
Petr N. Vabishchevich23727.46