Title
Trajectory similarity join in spatial networks
Abstract
AbstractThe matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider the case of trajectory similarity join (TS-Join), where the objects are trajectories of vehicles moving in road networks. Thus, given two sets of trajectories and a threshold θ, the TS-Join returns all pairs of trajectories from the two sets with similarity above θ. This join targets applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction.With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithm's per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.
Year
DOI
Venue
2017
10.14778/3137628.3137630
Hosted Content
Field
DocType
Volume
Data mining,Road networks,Upper and lower bounds,Computer science,Theoretical computer science,Exploit,Merge (version control),Data management,Database,Empirical research,Trajectory,Traffic congestion
Journal
10
Issue
ISSN
Citations 
11
2150-8097
25
PageRank 
References 
Authors
0.69
16
6
Name
Order
Citations
PageRank
Shang Shuo138425.35
lisi chen245225.06
Zhewei Wei321520.07
Christian S. Jensen4106511129.45
Kai Zheng593669.43
Panos Kalnis63297141.30