Title
Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis.
Abstract
Synthesizing realistic profile faces is promising for more efficiently training deep pose-invariant models for large-scale unconstrained face recognition, by populating samples with extreme poses and avoiding tedious annotations. However, learning from synthetic faces may not achieve the desired performance due to the discrepancy between distributions of the synthetic and real face images. To narrow this gap, we propose a Dual-Agent Generative Adversarial Network (DA-GAN) model, which can improve the realism of a face simulator's output using unlabeled real faces, while preserving the identity information during the realism refinement. The dual agents are specifically designed for distinguishing real v.s. fake and identities simultaneously. In particular, we employ an off-the-shelf 3D face model as a simulator to generate profile face images with varying poses. DA-GAN leverages a fully convolutional network as the generator to generate high-resolution images and an auto-encoder as the discriminator with the dual agents. Besides the novel architecture, we make several key modifications to the standard GAN to preserve pose and texture, preserve identity and stabilize training process: (i) a pose perception loss; (ii) an identity perception loss; (iii) an adversarial loss with a boundary equilibrium regularization term. Experimental results show that DA-GAN not only presents compelling perceptual results but also significantly outperforms state-of-the-arts on the large-scale and challenging NIST IJB-A unconstrained face recognition benchmark. In addition, the proposed DA-GAN is also promising as a new approach for solving generic transfer learning problems more effectively. DA-GAN is the foundation of our submissions to NIST IJB-A 2017 face recognition competitions, where we won the 1st places on the tracks of verification and identification.
Year
Venue
Field
2017
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017)
Computer vision,Facial recognition system,Discriminator,Generative adversarial network,Face synthesis,Computer science,Transfer of learning,NIST,Regularization (mathematics),Artificial intelligence,Perception,Machine learning
DocType
Volume
ISSN
Conference
30
1049-5258
Citations 
PageRank 
References 
12
0.52
0
Authors
10
Name
Order
Citations
PageRank
Jian Zhao1595.07
Lin Xiong2484.07
Karlekar Jayashree3612.45
Jianshu Li414112.04
Fang Zhao5464.03
Zhecan Wang6202.74
Sugiri Pranata7365.78
Sheng Mei Shen813113.13
Shuicheng Yan99701359.54
Feng, Jiashi10120.52