Title
An 800 Mhz mixed-VT 4T gain-cell embedded DRAM in 28 nm CMOS bulk process for approximate computing applications.
Abstract
Gain-cell embedded DRAM (GC-eDRAM) is an attractive alternative to traditional SRAM, due to its high-density, low-leakage, and inherent 2-ported operation, yet, its dynamic nature leads to limited retention time that requires periodic, power-hungry refresh cycles. This drawback is further aggravated in scaled technologies, where increased leakage currents and decreased in-cell storage capacitances lead to accelerated data integrity deterioration. However, the emerging approximate computing paradigm utilizes the inherent error resilience of some applications to tolerate data errors. Such error tolerance can be exploited by reducing the refresh rate in GC-eDRAM to achieve a substantial decrease in power consumption, at the cost of an increase in cell failure probability. In this paper, we present the first fabricated and fully functional GC-eDRAM in a 28 nm bulk CMOS technology. The array, which is based on a novel mixed-V-T 4T bitcell, can be used in both traditional and for approximate computing applications, featuring a small silicon footprint and supporting high-performance operation. Silicon measurements demonstrate successful operation at 800 Mhz under a 900 mV supply, while retaining almost 30% lower area than a single-ported 6T SRAM in the same technology.
Year
Venue
DocType
2017
ESSCIRC 2017 - 43RD IEEE EUROPEAN SOLID STATE CIRCUITS CONFERENCE
Conference
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Robert Giterman1409.55
Alexander Fish212321.24
Narkis Geuli300.34
Elad Mentovich400.34
A. Burg51426126.54
Adam Teman612919.12