Title
Dynamically Enriched MPM for Invertible Elasticity
Abstract
AbstractWe extend the material point method MPM for robust simulation of extremely large elastic deformation. This facilitates the application of MPM towards a unified solver since its versatility has been demonstrated lately with simulation of varied materials. Extending MPM for invertible elasticity requires accounting for several of its inherent limitations. MPM as a meshless method exhibits numerical fracture in large tensile deformations. We eliminate it by augmenting particles with connected material domains. Besides, constant redefinition of the interpolating functions between particles and grid introduces accumulated error which behaves like artificial plasticity. We address this problem by utilizing the Lagrangian particle domains as enriched degrees of freedom for simulation. The enrichment is applied dynamically during simulation via an error metric based on local deformation of particles. Lastly, we novelly reformulate the computation in reference configuration and investigate inversion handling techniques to ensure the robustness of our method in regime of degenerated configurations. The power and robustness of our method are demonstrated with various simulations that involve extreme deformations.
Year
DOI
Venue
2017
10.1111/cgf.12987
Periodicals
Keywords
Field
DocType
material point method,dynamical enrichment,invertible elasticity
Topology,Material point method,Computer science,Interpolation,Robustness (computer science),Theoretical computer science,Solver,Deformation (mechanics),Invertible matrix,Elasticity (economics),Computation
Journal
Volume
Issue
ISSN
36
6
0167-7055
Citations 
PageRank 
References 
2
0.36
19
Authors
5
Name
Order
Citations
PageRank
Fei Zhu161.77
Jing Zhao220.36
Sheng Li313415.13
Yong Tang4309.45
Guoping Wang548863.02