Title
Effect of Slip Conditions and Entropy Generation Analysis with an Effective Prandtl Number Model on a Nanofluid Flow through a Stretching Sheet.
Abstract
This article describes the impact of slip conditions on nanofluid flow through a stretching sheet. Nanofluids are very helpful to enhance the convective heat transfer in a boundary layer flow. Prandtl number also play a major role in controlling the thermal and momentum boundary layers. For this purpose, we have considered a model for effective Prandtl number which is borrowed by means of experimental analysis on a nano boundary layer, steady, two-dimensional incompressible flow through a stretching sheet. We have considered gamma Al2O3-H2O and Al2O3-C2H6O2 nanoparticles for the governing flow problem. An entropy generation analysis is also presented with the help of the second law of thermodynamics. A numerical technique known as Successive Taylor Series Linearization Method (STSLM) is used to solve the obtained governing nonlinear boundary layer equations. The numerical and graphical results are discussed for two cases i.e., (i) effective Prandtl number and (ii) without effective Prandtl number. From graphical results, it is observed that the velocity profile and temperature profile increases in the absence of effective Prandtl number while both expressions become larger in the presence of Prandtl number. Further, numerical comparison has been presented with previously published results to validate the current methodology and results.
Year
DOI
Venue
2017
10.3390/e19080414
ENTROPY
Keywords
Field
DocType
heat transfer,entropy,Prandtl number,nanofluid,slip effects
Prandtl number,Mathematical optimization,Mixing length model,Nusselt number,Magnetic Prandtl number,Boundary layer,Mechanics,Classical mechanics,Turbulent Prandtl number,Mathematics,Film temperature,Nanofluid
Journal
Volume
Issue
ISSN
19
8
1099-4300
Citations 
PageRank 
References 
0
0.34
7
Authors
2
Name
Order
Citations
PageRank
M.M. Rashidi114022.72
Munawwar Ali Abbas220.87