Title
The SIC Question: History and State of Play.
Abstract
Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott's code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.
Year
DOI
Venue
2017
10.3390/axioms6030021
AXIOMS
Keywords
Field
DocType
quantum information,quantum measurement,SIC-POVM,equiangular lines,Weyl-Heisenberg group
Discrete mathematics,Quantum,Algebra,Quantum measurement,Pure mathematics,Bibliography,SIC-POVM,Quantum information,Equiangular lines,Conjecture,Mathematics
Journal
Volume
Issue
ISSN
6
3
2075-1680
Citations 
PageRank 
References 
6
0.58
11
Authors
3
Name
Order
Citations
PageRank
Christopher A. Fuchs1386.36
Michael C. Hoang260.58
Blake Stacey3131.92