Title
Fine-Grained Head Pose Estimation Without Keypoints
Abstract
Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models (1).
Year
DOI
Venue
2018
10.1109/CVPRW.2018.00281
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
DocType
Volume
ISSN
Conference
abs/1710.00925
2160-7508
Citations 
PageRank 
References 
6
0.53
20
Authors
3
Name
Order
Citations
PageRank
Nataniel Ruiz1163.25
Eunji Chong2152.89
James M. Rehg35259474.66