Title
Finger ECG-based authentication for healthcare data security using artificial neural network
Abstract
Wearable and mobile medical devices provide efficient, comfortable, and economic health monitoring, having a wide range of applications from daily to clinical scenarios. Health data security becomes a critically important issue. Electrocardiogram (ECG) has proven to be a potential biometric in human recognition over the past decade. Unlike conventional authentication methods using passwords, fingerprints, face, etc., ECG signal can not be simply intercepted, duplicated, and enables continuous identification. However, in many of the studies, algorithms developed are not suitable for practical application, which usually require long ECG data for authentication. In this work, we introduce a two-phase authentication using artificial neural network (NN) models. This algorithm enables fast authentication within only 3 seconds, meanwhile achieves reasonable performance in recognition. We test the proposed method in a controlled laboratory experiment with 50 subjects. Finger ECG signals are collected using a mobile device at different times and physical statues. At the first stage, a “General” NN model is constructed based on data from the cohort and used for preliminary screening, while at the second stage “Personal” NN models constructed from single individual's data are applied as fine-grained identification. The algorithm is tested on the whole data set, and on different sizes of subsets (5, 10, 20, 30, and 40). Results proved that the proposed method is feasible and reliable for individual authentication, having obtained average False Acceptance Rate (FAR) and False Rejection Rate (FRR) below 10% for the whole data set.
Year
DOI
Venue
2017
10.1109/HealthCom.2017.8210804
2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)
Keywords
Field
DocType
finger ECG signals,General NN model,stage Personal NN models,healthcare data security,wearable devices,mobile medical devices,human recognition,ECG signal,artificial neural network models,health monitoring,ECG data,finger ECG-based authentication,electrocardiogram
Data mining,Data modeling,Data security,Authentication,Computer science,Feature extraction,Mobile device,Password,Biometrics,Artificial neural network
Conference
ISBN
Citations 
PageRank 
978-1-5090-6705-3
0
0.34
References 
Authors
18
2
Name
Order
Citations
PageRank
Ying Chen12719.85
Wenxi Chen22211.15