Title
Coding Block-Level Perceptual Video Coding For 4:4:4 Data In Hevc
Abstract
There is an increasing consumer demand for high bit-depth 4:4:4 HD video data playback due to its superior perceptual visual quality compared with standard 8-bit subsampled 4:2:0 video data. Due to vast file sizes and associated bitrates, it is desirable to compress raw high bit-depth 4:4:4 HD video sequences as much as possible without incurring a discernible decrease in visual quality. In this paper, we propose a Coding Block (CB)-level perceptual video coding technique for HEVC named Full Color Perceptual Quantization (FCPQ). FCPQ is designed to adjust the Quantization Parameter (QP) at the CB level - i.e., the luma CB and the chroma Cb and Cr CBs - according to the variances of pixel data in each CB. FCPQ is based on the default perceptual quantization method in HEVC called AdaptiveQP. AdaptiveQP adjusts the QP of an entire 2Nx2N CU based only on the spatial activity of the constituent luma CB. As demonstrated in this paper, by not accounting for the spatial activity of the constituent chroma CBs, as is the case with AdaptiveQP, coding performance can be significantly affected; this is because the variance of pixel data in a luma CB is notably different from the variances of pixel data in chroma Cb and Cr CBs. FCPQ, therefore, addresses this problem. In terms of coding performance, FCPQ achieves BD-Rate improvements of up to 39.5% (Y), 16% (Cb) and 29.9% (Cr) compared with AdaptiveQP.
Year
DOI
Venue
2018
10.1109/icip.2017.8296730
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)
Keywords
DocType
Volume
Perceptual Video Coding, HEVC, 4:4:4, Perceptual Quantization, Coding Block
Journal
abs/1802.05884
ISSN
Citations 
PageRank 
1522-4880
0
0.34
References 
Authors
2
3
Name
Order
Citations
PageRank
Lee Prangnell100.34
Miguel Hernandez-Cabronero2278.82
Victor Sanchez314431.22