Title
Bayesian optimisation with prior reuse for motion planning in robot soccer.
Abstract
We integrate learning and motion planning for soccer playing differential drive robots using Bayesian optimisation. Trajectories generated using end-slope cubic Bezier splines are first optimised globally through Bayesian optimisation for a set of candidate points with obstacles. The optimised trajectories along with robot and obstacle positions and velocities are stored in a database. The closest planning situation is identified from the database using k-Nearest Neighbour approach. It is further optimised online through reuse of prior information from previously optimised trajectory. Our approach reduces computation time of trajectory optimisation considerably. Velocity profiling generates velocities consistent with robot kinodynamoic constraints, and avoids collision and slipping. Extensive testing is done on developed simulator as well as on physical differential drive robots. Our method shows marked improvements in mitigating tracking error, and reducing traversal and computational time over competing techniques under the constraints of performing tasks in real time.
Year
DOI
Venue
2018
10.1145/3152494.3152502
COMAD/CODS
Field
DocType
Citations 
Motion planning,Obstacle,Tree traversal,Simulation,Engineering,Robot,Trajectory,Computation,Bayesian probability,Tracking error
Conference
0
PageRank 
References 
Authors
0.34
21
5
Name
Order
Citations
PageRank
Abhinav Agarwalla1772.04
Arnav Kumar Jain2793.41
K. V. Manohar300.34
Arpit Tarang Saxena400.34
Jayanta Mukhopadhyay57226.05