Title
Design and Security Analysis of Quantum Key Distribution Protocol Over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver.
Abstract
This paper proposes a novel design and analyzes security performance of quantum key distribution (QKD) protocol over free-space optics (FSO). Unlike conventional QKD protocols based on physical characteristics of quantum mechanics, the proposed QKD protocol can be implemented on standard FSO systems using subcarrier intensity modulation binary phase shift keying and direct detection with a dual-threshold receiver. Under security constraints, the design criteria for FSO transmitter and receiver, in particular, the modulation depth and the selection of dual-threshold detection, respectively, is analytically investigated. For the security analysis, quantum bit error rate, ergodic secret-key rate, and final key-creation rate are concisely derived in novel closed-form expressions in terms of finite power series, taking into account the channel loss, atmospheric turbulence-induced fading, and receiver noises. Furthermore, Monte-Carlo simulations are performed to verify analytical results and the feasibility of the proposed QKD protocol.
Year
DOI
Venue
2018
10.1109/ACCESS.2018.2800291
IEEE ACCESS
Keywords
Field
DocType
Quantum key distribution (QKD),free-space optics (FSO),subcarrier intensity modulation (SIM),binary phase shift keying (BPSK),atmospheric turbulence-induced fading,dual-threshold direct detection
Quantum key distribution,Transmitter,Fading,Computer science,Communication channel,Electronic engineering,Free-space optical communication,Amplitude modulation,Photonics,Distributed computing,Phase-shift keying
Journal
Volume
ISSN
Citations 
6
2169-3536
0
PageRank 
References 
Authors
0.34
0
6
Name
Order
Citations
PageRank
Phuc V. Trinh143.89
Thanh V. Pham2285.30
Ngoc T. Dang386.43
Hung Viet Nguyen447032.35
Soon Xin Ng5990100.10
Anh T. Pham627740.14