Title
Deep-neural-network based sinogram synthesis for sparse-view CT image reconstruction.
Abstract
Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.
Year
Venue
Field
2018
arXiv: Medical Physics
Iterative reconstruction,Computer vision,Interpolation,Computed tomography,Sampling (statistics),Artificial intelligence,Missing data,Artificial neural network,Mathematics,Sparse matrix,Computation
DocType
Volume
Citations 
Journal
abs/1803.00694
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Hoyeon Lee100.68
Jong-Ha Lee2626.51
Hyeongseok Kim300.68
Byungchul Cho400.34
Seungryong Cho5145.34