Title
Arithmetic Complexity, Kleene Closure, and Formal Power Series
Abstract
The aim of this paper is to use formal power series techniques to study the structure of small arithmetic complexity classes such as GapNC and GapL. More precisely, we apply the formal power series operations of inversion and root extraction to these complexity classes. We define a counting version of Kleene closure and show that it is intimately related to inversion and root extraction within GapNC and GapL. We prove that Kleene closure, inversion, and root extraction are all hard operations in the following sense: there is a language in AC for which inversion and root extraction are GapL-complete and Kleene closure is NLOG-complete, and there is a finite set for which inversion and root extraction are GapNC -complete and Kleene closure is NC -complete, with respect to appropriate reducibilities. The latter result raises the question of classifying finite languages so that their inverses fall within interesting subclasses of GapNC , such as GapAC . We initiate work in this direction by classifying the complexity of the Kleene closure of finite languages. We formulate the problem in terms of finite monoids and relate its complexity to the internal structure of the monoid. Some results in this paper show properties of complexity classes that are interesting independent of formal power series considerations, including some useful closure properties and complete problems for GapL.
Year
DOI
Venue
1999
https://doi.org/10.1007/s00224-003-1077-7
Theory of Computing Systems / Mathematical Systems Theory
Keywords
DocType
Volume
Word Problem,Complexity Class,Formal Power Series,Root Extraction,Regular Language
Journal
36
Issue
ISSN
Citations 
4
1432-4350
13
PageRank 
References 
Authors
0.90
35
3
Name
Order
Citations
PageRank
Eric Allender11434121.38
V. Arvind2524.34
Meena Mahajan368856.90