Title
Cardinality Leap for Open-Ended Evolution: Theoretical Consideration and Demonstration by "Hash Chemistry".
Abstract
Open-ended evolution requires unbounded possibilities that evolving entities can explore. The cardinality of a set of those possibilities thus has a significant implication for the open-endedness of evolution. I propose that facilitating formation of higher-order entities is a generalizable, effective way to cause a in the set of possibilities that promotes open-endedness. I demonstrate this idea with a simple, proof-of-concept toy model called that uses a hash function as a fitness evaluator of evolving entities of any size or order. Simulation results showed that the cumulative number of unique replicating entities that appeared in evolution increased almost linearly along time without an apparent bound, demonstrating the effectiveness of the proposed cardinality leap. It was also observed that the number of individual entities involved in a single replication event gradually increased over time, indicating evolutionary appearance of higher-order entities. Moreover, these behaviors were not observed in control experiments in which fitness evaluators were replaced by random number generators. This strongly suggests that the dynamics observed in Hash Chemistry were indeed evolutionary behaviors driven by selection and adaptation taking place at multiple scales.
Year
DOI
Venue
2018
10.1162/artl_a_00283
Artificial Life
Keywords
Field
DocType
Hash Chemistry,Open-ended evolution,cardinality leap,higher-order entities,set of possibilities,universal fitness evaluator
Toy model,Computer science,Cardinality,Theoretical computer science,Artificial intelligence,Hash function,Machine learning
Journal
Volume
Issue
ISSN
abs/1806.06628
2
1064-5462
Citations 
PageRank 
References 
0
0.34
8
Authors
1
Name
Order
Citations
PageRank
Hiroki Sayama131949.14