Title
A Collaborative PHY-Aided Technique for End-to-End IoT Device Authentication.
Abstract
Nowadays, Internet of Things (IoT) devices are rapidly proliferating to support a vast number of end-to-end (E2E) services and applications, which require reliable device authentication for E2E data security. However, most low-cost IoT end devices with limited computing resources have difficulties in executing the increasingly complicated cryptographic security protocols, resulting in increased vulnerability of the virtual authentication credentials to malicious cryptanalysis. An attacker possessing compromised credentials could be deemed legitimate by the conventional cryptography-based authentication. Although inherently robust to upper-layer unauthorized cryptanalysis, the device-to-device physical-layer (PHY) authentication is practically difficult to be applied to the E2E IoT scenario and to be integrated with the existing, well-established cryptography primitives without any conflict. This paper proposes an enhanced E2E IoT device authentication that achieves seamless integration of PHY security into traditional asymmetric cryptography-based authentication schemes. Exploiting the collaboration of several intermediate nodes (e.g., edge gateway, access point, and full-function device), multiple radio-frequency features of an IoT device can be estimated, quantized, and used in the proposed PHY identity-based cryptography for key protection. A closed-form expression of the generated PHY entropy is derived for measuring the security enhancement. The evaluation results of our cross-layer authentication demonstrate an elevated resistance to various computation-based impersonation attacks. Furthermore, the proposed method does not impose any extra implementation overhead on resource-constrained IoT devices.
Year
DOI
Venue
2018
10.1109/ACCESS.2018.2859781
IEEE ACCESS
Keywords
Field
DocType
Device authentication,Internet of Things,physical layer security,collaborative security,radio-frequency fingerprinting,cross-layer security
Data security,Authentication,Cryptographic protocol,Computer science,Cryptography,Cryptanalysis,Computer network,Default gateway,PHY,Public-key cryptography
Journal
Volume
ISSN
Citations 
6
2169-3536
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Peng Hao1173.63
Xianbin Wang22365223.86
Weiming Shen33407343.73