Title
Preliminary computational framework to map MRI-derived markers to predict response to cardiac resynchronization therapy
Abstract
Prediction of the response to cardiac resynchronization therapy (CRT) is still uncertain. On our previous CRT clinical research, we have found that a decrease in the ratio between the two principal axes of the 3D trajectory of the electrode at the pacing site (S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> /S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) recorded before and after pacing could define a marker between responders and non-responders to CRT. The aim of this work is to design a framework to map the S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> /S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> marker on the 3D ventricular anatomy as a preliminary test to verify if the concept of the S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> /S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> may predict the response to CRT in a pre-implant scenario. Based on MR images of a CRT candidate, the 3D mesh of the left ventricle geometry is constructed. Using image registration we are able to track the deformation of the mesh throughout the cardiac cycle and to compute the trajectory of each point of the mesh. Then the S/S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> is calculated for every trajectory and mapped on a 3D geometry representation. We have applied this framework to one CRT patient, highlighting that in the area in which the electrode was placed the S/S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> was low. This value suggests a poor possibility of a pacing-induced decrease for the S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> /S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ratio after implant. Consistently the patient was classified as non-responder at the clinical follow-up. Ongoing work focuses on the clinical validation of S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> /S <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> as a tool for the prediction of CRT response and the acquisition of MR data of potential candidates to CRT for the assessment of the presented framework.
Year
DOI
Venue
2017
10.22489/CinC.2017.045-436
2017 Computing in Cardiology (CinC)
Keywords
Field
DocType
left ventricle geometry,cardiac cycle,3D geometry representation,CRT patient,CRT response,CRT clinical research,image registration,mesh deformation,pre-implant scenario,preliminary test,3D ventricular anatomy,pacing site,principal axes,cardiac resynchronization therapy,map MRI,preliminary computational framework
Computer vision,Polygon mesh,3d geometry,Computer science,Principal axis theorem,Artificial intelligence,Cardiac cycle,Cardiac resynchronization therapy,Trajectory,Image registration
Conference
Volume
ISSN
ISBN
44
2325-8861
978-1-5386-4555-0
Citations 
PageRank 
References 
0
0.34
1
Authors
6
Name
Order
Citations
PageRank
Carolina Vallecilla100.34
Martino Alessandrini216516.19
Claudio Fabbri302.70
Corrado Tomasi421.32
Cristiana Corsi54914.59
Stefano Severi62819.47