Title
User-Configurable Timing and Navigation for UAVs.
Abstract
As the use of unmanned aerial vehicles (UAVs) for industrial use increases, so are the demands for highly accurate navigation solutions, and with the high dynamics that UAVs offer, the accuracy of a measurement does not only depend on the value of the measurement, but also the accuracy of the associated timestamp. Sensor timing using dedicated hardware is the de-facto method to achieve optimal sensor performance, but the solutions available today have limited flexibility and requires much effort when changing sensors. This article presents requirements and suggestions for a highly accurate, reconfigurable sensor timing system that simplifies integration of sensor systems and navigation systems for UAVs. Both typical avionics sensors, like GNSS receivers and IMUs, and more complex sensors, such as cameras, are supported. To verify the design, an implementation named the SenTiBoard was created, along with a software support package and a baseline sensor-suite. With the solution presented in this paper we get a measurement resolution of 10 nanoseconds and we can transfer up to 7.6 megabytes per second. If the sensor suite includes a GNSS receiver with a pulse-per-second (PPS) reference, the sensor measurements can be related to an absolute time reference (UTC) with a clock drift of 1.9 microseconds per second RMS. An experiment was carried out, using a Mini Cruiser fixed-wing UAV, where errors in georeferencing infrared images were reduced with a factor of 4 when compared to a software synchronization method.
Year
DOI
Venue
2018
10.3390/s18082468
SENSORS
Keywords
Field
DocType
reconfigurable sensor systems,robot navigation,sensor synchronization,drones
Systems engineering,Navigation system,Electronic engineering,Engineering
Journal
Volume
Issue
Citations 
18
8.0
2
PageRank 
References 
Authors
0.65
2
2
Name
Order
Citations
PageRank
Sigurd Albrektsen141.34
Tor A. Johansen21008148.90