Title
A 4096-Neuron 1M-Synapse 3.8PJ/SOP Spiking Neural Network with On-Chip STDP Learning and Sparse Weights in 10NM FinFET CMOS.
Abstract
A reconfigurable 4096-neuron, 1M-synapse chip in 10-nm FinFET CMOS is developed to accelerate inference and learning for many classes of spiking neural networks (SNNs). The SNN features digital circuits for leaky integrate and fire neuron models, on-chip spike-timing-dependent plasticity (STDP) learning, and high-fan-out multicast spike communication. Structured fine-grained weight sparsity reduces synapse memory by up to 16 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> with less than 2% overhead for storing connections. Approximate computing co-optimizes the dropping flow control and benefits from algorithmic noise to process spatiotemporal spike patterns with up to 9.4 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> lower energy. The SNN achieves a peak throughput of 25.2 GSOP/s at 0.9 V, peak energy efficiency of 3.8 pJ/SOP at 525 mV, and 2.3- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> /neuron operation at 450 mV. On-chip unsupervised STDP trains a spiking restricted Boltzmann machine to de-noise Modified National Institute of Standards and Technology (MNIST) digits and to reconstruct natural scene images with RMSE of 0.036. Near-threshold operation, in conjunction with temporal and spatial sparsity, reduces energy by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$17.4\times $ </tex-math></inline-formula> to 1.0- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{J}$ </tex-math></inline-formula> /classification in a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$236 \times 20$ </tex-math></inline-formula> feed-forward network that is trained to classify MNIST digits using supervised STDP. A binary-activation multilayer perceptron with 50% sparse weights is trained offline with error backpropagation to classify MNIST digits with 97.9% accuracy at 1.7- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{J}$ </tex-math></inline-formula> /classification.
Year
DOI
Venue
2019
10.1109/JSSC.2018.2884901
VLSI Circuits
Keywords
DocType
Volume
Synapses,System-on-chip,History,Training,Biological neural networks
Journal
54
Issue
ISSN
Citations 
4
0018-9200
16
PageRank 
References 
Authors
0.69
0
5
Name
Order
Citations
PageRank
Gregory K. Chen1221.64
Raghavan Kumar27312.56
H. Ekin Sumbul3160.69
Phil Knag4183.17
Ram K. Krishnamurthy5160.69