Title
Automated Theorem Proving in Intuitionistic Propositional Logic by Deep Reinforcement Learning.
Abstract
The problem-solving in automated theorem proving (ATP) can be interpreted as a search problem where the prover constructs a proof tree step by step. In this paper, we propose a deep reinforcement learning algorithm for proof search in intuitionistic propositional logic. The most significant challenge in the application of deep learning to the ATP is the absence of large, public theorem database. We, however, overcame this issue by applying a novel data augmentation procedure at each iteration of the reinforcement learning. We also improve the efficiency of the algorithm by representing the syntactic structure of formulas by a novel compact graph representation. Using the large volume of augmented data, we train highly accurate graph neural networks that approximate the value function for the set of the syntactic structures of formulas. Our method is also cost-efficient in terms of computational time. We will show that our prover outperforms Coqu0027s $texttt{tauto}$ tactic, a prover based on human-engineered heuristics. Within the specified time limit, our prover solved 84% of the theorems in a benchmark library, while $texttt{tauto}$ was able to solve only 52%.
Year
Venue
DocType
2018
arXiv: Learning
Journal
Volume
Citations 
PageRank 
abs/1811.00796
1
0.35
References 
Authors
20
3
Name
Order
Citations
PageRank
Mitsuru Kusumoto1333.31
Keisuke Yahata210.35
Masahiro Sakai310.68