Title
Energy-Balanced Routing Algorithm Based on Ant Colony Optimization for Mobile Ad Hoc Networks.
Abstract
The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization (IEMACO) routing algorithm. Firstly, the algorithm accelerates the convergence speed of the routing algorithm and reduces the number of route discovery packets by introducing an offset coefficient of the transition probability. Then, based on the energy consumption rate, the remaining lifetime of nodes (RLTn) is considered. The position and velocity information predicts the remaining lifetime of the link (RLTl). The algorithm combines RLTn and RLTl to design the pheromone generation method, which selects the better quality path according to the transition probability to ensure continuous data transmission. As a result, the energy consumption in the network is balanced. The simulation results show that compared to the Ad Hoc on-demand multipath distance vector (AOMDV) algorithm with multipath routing and the Ant Hoc Max-Min-Path (AntHocMMP) algorithm in consideration of node energy consumption and mobility, the IEMACO algorithm can reduce the frequency of route discovery and has lower end-to-end delay as well as packet loss rate especially when nodes move, and can extend the network lifetime.
Year
DOI
Venue
2018
10.3390/s18113657
SENSORS
Keywords
Field
DocType
energy constraint,ant colony optimization algorithm,convergence,remaining lifetime
Mobile ad hoc network,Ant colony optimization algorithms,Energy balanced,Electronic engineering,Engineering,Distributed computing,Routing algorithm
Journal
Volume
Issue
ISSN
18
11.0
1424-8220
Citations 
PageRank 
References 
1
0.35
0
Authors
5
Name
Order
Citations
PageRank
Dong Yang111618.09
Hongxing Xia210.35
Erfei Xu310.35
Dongliang Jing421.37
Hailin Zhang510219.19