Title
A Low-Complexity FMCW Surveillance Radar Algorithm Using Two Random Beat Signals.
Abstract
This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called 'blind-speed problem' that cannot detect a target of a specific velocity. In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting two beat signals selected for MTI for each frame. To further reduce the redundant complexity, the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range detection and performs multidimensional FFT only when it is determined that a target exists at each frame. The simulation results show that despite low complexity, the proposed algorithm detects moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the proposed algorithm was verified by performing an experiment using the FMCW radar system in a real environment.
Year
DOI
Venue
2019
10.3390/s19030608
SENSORS
Keywords
Field
DocType
FMCW radar,surveillance,low complexity,Doppler
Secondary surveillance radar,Continuous-wave radar,Moving target indication,Clutter,Algorithm,Fast Fourier transform,Beat (music),Engineering,Doppler effect,Computational complexity theory
Journal
Volume
Issue
ISSN
19
3.0
1424-8220
Citations 
PageRank 
References 
1
0.35
6
Authors
4
Name
Order
Citations
PageRank
Bong-Seok Kim110.35
Young-Seok Jin2123.53
Sangdong Kim372.41
Jonghun Lee46714.55