Title
Modeling spatially dependent functional data via regression with differential regularization.
Abstract
We propose a method for modeling spatially dependent functional data, based on regression with differential regularization. The regularizing term enables to include problem-specific information about the spatio-temporal variation of the phenomenon under study, formalized in terms of a time-dependent partial differential equation. The method is implemented using a discretization based on finite elements in space and finite differences in time. This non-tensor product basis allows to handle efficiently data distributed over complex domains and where the shape of the domain influences the phenomenon’s behavior. Moreover, the method can comply with specific conditions at the boundary of the domain of interest. Simulation studies compare the proposed model to available techniques for spatio-temporal data. The method is also illustrated via an application to the study of blood-flow velocity field in a carotid artery affected by atherosclerosis, starting from echo-color doppler and magnetic resonance imaging data.
Year
DOI
Venue
2019
10.1016/j.jmva.2018.09.006
Journal of Multivariate Analysis
Keywords
Field
DocType
Finite elements,Partial differential equation,Penalized regression,Smoothing
Discretization,Finite difference,Algorithm,Finite element method,Regularization (mathematics),Smoothing,Statistical model,Numerical analysis,Statistics,Partial differential equation,Mathematics
Journal
Volume
ISSN
Citations 
170
0047-259X
3
PageRank 
References 
Authors
0.46
4
4
Name
Order
Citations
PageRank
Eleonora Arnone130.46
Laura Azzimonti281.63
Fabio Nobile333629.63
Laura M. Sangalli4435.37