Title
A REGULARIZED DEAN-KAWASAKI MODEL: DERIVATION AND ANALYSIS
Abstract
The Dean-Kawasaki model consists of a nonlinear stochastic partial differential equation featuring a conservative, multiplicative, stochastic term with non-Lipschitz coefficient, driven by space-time white noise; this equation describes the evolution of the density function for a system of finitely many particles governed by Langevin dynamics. Well-posedness for the Dean-Kawasaki model is open except for specific diffusive cases, corresponding to overdamped Langevin dynamics. It was recently shown by Lehmann, Konarovskyi, and von Renesse that no regular (nonatomic) solutions exist. We derive and analyze a suitably regularized Dean-Kawasaki model of wave equation type driven by colored noise, corresponding to second-order Langevin dynamics, in one space dimension. The regularization can be interpreted as considering particles of finite size rather than describing them by atomic measures. We establish existence and uniqueness of a solution. Specifically, we prove a high-probability result for the existence and uniqueness of mild solutions to this regularized Dean-Kawasaki model.
Year
DOI
Venue
2019
10.1137/18M1172697
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Keywords
DocType
Volume
Dean-Kawasaki model,stochastic wave equation,spatial regularization of space-time white noise,Langevin dynamics,mild solutions
Journal
51
Issue
ISSN
Citations 
2
0036-1410
0
PageRank 
References 
Authors
0.34
1
3
Name
Order
Citations
PageRank
Federico Cornalba100.34
Tony Shardlow2399.11
Johannes Zimmer393.33