Title
Spontaneous Electromagnetic Induction Modulating The Neuronal Dynamical Response
Abstract
Spontaneous electromagnetic induction originating from neuronal electrical activity is believed to reflect the memory ability in the neural system and significantly modulates neural information transmission, but its fundamental effect on the neuronal dynamic properties is still not well understood. In this paper, we use a memristor to couple neuronal electrical activity and magnetic fields and study how the spontaneous electromagnetic induction modulates the neuronal dynamical response to external stimulation. It is found that the negative feedback of electromagnetic induction on the neuron significantly reduces the dynamical response range, decreases the oscillation amplitude and induces a higher firing frequency. Meanwhile, the memory effect on electromagnetic induction can induce two kinds of bistability, including the coexistence of a stable limit cycle and a fixed point, and the coexistence of two stable limit cycles. Furthermore, high electric driving for electromagnetic induction produces complex firing patterns with single, double and multiple frequencies. Our results not only further confirm the efficacy of spontaneous electromagnetic induction in modulating the neuronal dynamical properties but also provide insights into the possibilities of choosing suitable parameter spaces in studying the effects of external magnetic induction on brain functions.
Year
DOI
Venue
2019
10.1142/S0218127419500056
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
Keywords
Field
DocType
Neuron, electromagnetic induction, bifurcation, memristor
Neuroscience,Memristor,Electromagnetic induction,Control theory,Neural system,Neuron,Mathematics,Bifurcation
Journal
Volume
Issue
ISSN
29
1
0218-1274
Citations 
PageRank 
References 
0
0.34
10
Authors
4
Name
Order
Citations
PageRank
Rong Wang100.34
Peihua Feng200.34
Yongchen Fan300.34
Ying Wu4195.40