Title
A Novel Stochastic Framework Based on Cloud Theory and $\\theta $ -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration
Abstract
Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system.
Year
DOI
Venue
2016
10.1109/TSG.2015.2434844
IEEE Transactions on Smart Grid
Keywords
Field
DocType
Uncertainty,Entropy,Switches,Stochastic processes,Optimization,Probability density function,Sociology
Mathematical optimization,Monte Carlo method,Bat algorithm,Fuzzy logic,Stochastic process,Engineering,Fuzzy control system,Control reconfiguration,Cloud computing,Randomness
Journal
Volume
Issue
ISSN
7
2
1949-3053
Citations 
PageRank 
References 
0
0.34
0
Authors
3
Name
Order
Citations
PageRank
Abdollah Kavousi-Fard126831.99
Taher Niknam242332.02
Mahmud Fotuhi-Firuzabad316233.10