Title
Binocular robot vision emulating disparity computation in the primary visual cortex.
Abstract
We designed a VLSI binocular vision system that emulates the disparity computation in the primary visual cortex (V1). The system consists of two silicon retinas, orientation chips, and field programmable gate array (FPGA), mimicking a hierarchical architecture of visual information processing in the disparity energy model. The silicon retinas emulate a Laplacian–Gaussian-like receptive field of the vertebrate retina. The orientation chips generate an orientation-selective receptive field by aggregating multiple pixels of the silicon retina, mimicking the Hubel–Wiesel-type feed-forward model in order to emulate a Gabor-like receptive field of simple cells. The FPGA receives outputs from the orientation chips corresponding to the left and right eyes and calculates the responses of the complex cells based on the disparity energy model. The system can provide the responses of complex cells tuned to five different disparities and a disparity map obtained by comparing these energy outputs. Owing to the combination of spatial filtering by analog parallel circuits and pixel-wise computation by hard-wired digital circuits, the present system can execute the disparity computation in real time using compact hardware.
Year
DOI
Venue
2008
10.1016/j.neunet.2007.12.033
Neural Networks
Keywords
Field
DocType
Neuromorphic engineering,Analog VLSI,Multi-chip,FPGA,Disparity energy model
Receptive field,Computer vision,Binocular vision,Visual cortex,Computer science,Field-programmable gate array,Image processing,Neuromorphic engineering,Artificial intelligence,Very-large-scale integration,Computation
Journal
Volume
Issue
ISSN
21
2
0893-6080
Citations 
PageRank 
References 
12
0.64
10
Authors
3
Name
Order
Citations
PageRank
Kazuhiro Shimonomura15713.11
Takayuki Kushima2120.64
Tetsuya Yagi314027.73