Title
Minimizing proteome redundancy in the UniProt Knowledgebase.
Abstract
Advances in high-throughput sequencing have led to an unprecedented growth in genome sequences being submitted to biological databases. In particular, the sequencing of large numbers of nearly identical bacterial genomes during infection outbreaks and for other large-scale studies has resulted in a high level of redundancy in nucleotide databases and consequently in the UniProt Knowledgebase (UniProtKB). Redundancy negatively impacts on database searches by causing slower searches, an increase in statistical bias and cumbersome result analysis. The redundancy combined with the large data volume increases the computational costs for most reuses of UniProtKB data. All of this poses challenges for effective discovery in this wealth of data. With the continuing development of sequencing technologies, it is clear that finding ways to minimize redundancy is crucial to maintaining UniProt's essential contribution to data interpretation by our users. We have developed a methodology to identify and remove highly redundant proteomes from UniProtKB. The procedure identifies redundant proteomes by performing pairwise alignments of sets of sequences for pairs of proteomes and subsequently, applies graph theory to find dominating sets that provide a set of non-redundant proteomes with a minimal loss of information. This method was implemented for bacteria in mid-2015, resulting in a removal of 50 million proteins in UniProtKB. With every new release, this procedure is used to filter new incoming proteomes, resulting in a more scalable and scientifically valuable growth of UniProtKB.
Year
DOI
Venue
2016
10.1093/database/baw139
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION
Field
DocType
Volume
Data mining,Text mining,UniProt Knowledgebase,Information retrieval,Computer science,Proteome,Redundancy (engineering),Bioinformatics
Journal
2016
ISSN
Citations 
PageRank 
1758-0463
3
0.46
References 
Authors
10
8
Name
Order
Citations
PageRank
Borisas Bursteinas190.98
Ramona Britto230.46
Benoit Bely3515.25
Andrea H. Auchincloss414626.38
Catherine Rivoire541639.23
N Redaschi62104283.38
Claire O'Donovan751.20
Maria Jesus Martin82793365.41