Title
Streaming Bayesian inference: theoretical limits and mini-batch approximate message-passing.
Abstract
In statistical learning for real-world large-scale data problems, one must often resort to "streaming" algorithms which operate sequentially on small batches of data. In this work, we present an analysis of the information-theoretic limits of mini-batch inference in the context of generalized linear models and low-rank matrix factorization. In a controlled Bayes-optimal setting, we characterize the optimal performance and phase transitions as a function of mini-batch size. We base part of our results on a detailed analysis of a mini-batch version of the approximate message-passing algorithm (Mini-AMP), which we introduce. Additionally, we show that this theoretical optimality carries over into real-data problems by illustrating that Mini-AMP is competitive with standard streaming algorithms for clustering.
Year
DOI
Venue
2017
10.1109/allerton.2017.8262853
2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON)
DocType
Volume
ISSN
Conference
abs/1706.00705
2474-0195
Citations 
PageRank 
References 
1
0.35
4
Authors
4
Name
Order
Citations
PageRank
Andre Manoel1645.11
Florent Krzakala297767.30
Eric W. Tramel336517.03
Lenka Zdeborová4119078.62