Title
A Review on Machine Topologies and Control Techniques for Low-Noise Switched Reluctance Motors in Electric Vehicle Applications.
Abstract
This paper presents a technical overview for low-noise switched reluctance motor (SRM) drives in electric vehicle (EV) applications. With ever-increasing concerns over environmental and cost issues associated with permanent magnet machines, there is a technical trend to utilize SRMs in some mass production markets. The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. In spite of many advantages compared with conventional adjustable-speed drives, SRMs suffer from torque ripple and radial distortion (and thus noise and vibration) by their nature. Therefore, for high-performance vehicle applications, it is important and urgent to optimize the SRM system to overcome the drawbacks of the noise and vibration. In order to present clear solutions to the acoustic noise in SRMs, this paper starts by analyzing the mechanism of the radial vibration and torque ripples inherent in the motors, and then focuses on the state-of-the-art technologies to mitigate the radial force and torque ripples. It highlights two categories for low-noise SRMs, including the machine topology improvement and control strategy design for radial vibration mitigation and torque ripple reduction. Advanced technologies are reviewed, classified, and compared accordingly. In addition to these methodologies, the schemes that have been developed by authors are also presented and discussed. Finally, the research status on this topic is summarized and forecast research hotspots are presented. It is our intention that this paper provides the guidance on performance improvements for low-noise SRM drives in EV applications.
Year
DOI
Venue
2018
10.1109/ACCESS.2018.2837111
IEEE ACCESS
Keywords
Field
DocType
Switched reluctance motor (SRM),low noise,torque ripple,radial distortion,control,motor structure
Noise,Switched reluctance motor,Automotive engineering,Torque,Computer science,Electric vehicle,Magnet,Network topology,Vibration,Torque ripple,Distributed computing
Journal
Volume
ISSN
Citations 
6
2169-3536
0
PageRank 
References 
Authors
0.34
0
6
Name
Order
Citations
PageRank
Chun Gan154.27
Jianhua Wu201.01
Qingguo Sun302.03
Wubin Kong4255.59
Hongyu Li501.69
Yihua Hu68426.61