Title
How Cognitive Models of Human Body Experience Might Push Robotics.
Abstract
In the last decades, cognitive models of multisensory integration in human beings have been developed and applied to model human body experience. Recent research indicates that Bayesian and connectionist models might push developments in various branches of robotics: assistive robotic devices might adapt to their human users aiming at increased device embodiment, e.g., in prosthetics, and humanoid robots could be endowed with human-like capabilities regarding their surrounding space, e.g., by keeping safe or socially appropriate distances to other agents. In this perspective paper, we review cognitive models that aim to approximate the process of human sensorimotor behavior generation, discuss their challenges and potentials in robotics, and give an overview of existing approaches. While model accuracy is still subject to improvement, human-inspired cognitive models support the understanding of how the modulating factors of human body experience are blended. Implementing the resulting insights in adaptive and learning control algorithms could help to taylor assistive devices to their user's individual body experience. Humanoid robots who develop their own body schema could consider this body knowledge in control and learn to optimize their physical interaction with humans and their environment. Cognitive body experience models should be improved in accuracy and online capabilities to achieve these ambitious goals, which would foster human-centered directions in various fields of robotics.
Year
DOI
Venue
2019
10.3389/fnbot.2019.00014
FRONTIERS IN NEUROROBOTICS
Keywords
Field
DocType
cognitive models,human body experience,multisensory integration,robotics,assistive devices,humanoids
Body schema,Control algorithm,Physical interaction,Multisensory integration,Computer science,Human–computer interaction,Artificial intelligence,Cognition,Connectionism,Robotics,Machine learning,Humanoid robot
Journal
Volume
ISSN
Citations 
13
1662-5218
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Tim Schürmann121.42
Betty J. Mohler229028.73
Jan Peters33553264.28
Philipp Beckerle44714.13