Title
A Cantilever-Based Structure for Surface Features Characterization
Abstract
A cantilever-based structure is proposed in this work for characterizing surface features of kinetic friction coefficients and surface roughness wavelengths. A cantilever, with a friction block on the free end of it to contact with target surfaces, is designed. Kinetic friction coefficients are measured by resonance frequency shifts of the cantilever, while surface roughness wavelengths are measured by the peak frequencies of friction-induced vibration of the cantilever. When the resonance frequency shifts ΔωR reach a level of one hundred kilohertz, μN scale friction force and 0.001 scale kinetic friction coefficient detection can be achieved, while the contour mean width Rsm, correlated to the surface roughness wavelengths, are found to decrease from 181.4 to 78.5 with the vibration frequency increasing from 429.1 Hz to 1886.5 Hz. Comparing to traditional one, the proposed structure has advantage of being able to simultaneously characterize kinetic friction coefficients and surface roughness wavelengths, which can be used to sense very small changes in surface and is believed to be applicable to biomedical early warning.
Year
DOI
Venue
2018
10.1109/NEMS.2018.8556916
2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
Keywords
DocType
ISSN
cantilever-based structure,frequency shift,kinetic friction,friction force,surface roughness,surface features characterization
Conference
2474-3747
ISBN
Citations 
PageRank 
978-1-5386-5274-9
0
0.34
References 
Authors
4
8
Name
Order
Citations
PageRank
Cao Xia100.34
Dong F. Wang214.20
Xu Du33715.92
Guowen Zheng400.68
Haonan Feng500.68
Linjun An600.34
Mengyuan Mao700.68
Xin Liu828774.92