Title
Smartphone-based localization for blind navigation in building-scale indoor environments
Abstract
Continuous, accurate, and real-time smartphone-based localization is a promising technology for supporting independent mobility of people with visual impairments. However, despite extensive research on indoor localization techniques, localization technologies are still not ready for deployment in large and complex environments such as shopping malls and hospitals, where navigation assistance is needed most. We identify six key challenges for accurate smartphone localization related to the large-scale nature of the navigation environments and the user’s mobility. To address these challenges, we present a series of techniques that enhance a probabilistic localization algorithm. The algorithm utilizes mobile device inertial sensors and Received Signal Strength (RSS) from Bluetooth Low Energy (BLE) beacons. We evaluate the proposed system in a 21,000 m2 shopping mall that includes three multi-story buildings and a large open underground passageway. Experiments conducted in this environment demonstrate the effectiveness of the proposed technologies to improve localization accuracy. Field experiments with visually impaired participants confirm the practical performance of the proposed system in realistic use cases.
Year
DOI
Venue
2019
10.1016/j.pmcj.2019.04.003
Pervasive and Mobile Computing
Keywords
Field
DocType
Indoor localization,Smartphones,Bluetooth Low Energy,Mobile sensors,Accessibility
Beacon,Use case,Software deployment,Computer science,Real-time computing,Mobile device,Inertial measurement unit,Probabilistic logic,RSS,Distributed computing,Shopping mall
Journal
Volume
ISSN
Citations 
57
1574-1192
2
PageRank 
References 
Authors
0.41
0
6
Name
Order
Citations
PageRank
M Murata16411.96
Dragan Ahmetovic216621.09
Daisuke Sato332940.09
Hironobu Takagi474467.77
Kris M. Kitani563072.32
Chieko Asakawa691186.45