Title
An Autonomous Simultaneous Localization and Mapping Walker for Indoor Navigation
Abstract
Walkers have been used to help the elderly and individuals with movement disorders as an assistive and rehabilitation tool. This study presents a smart walker, a system which guides the users to navigate in an indoor environment. The Walker can be controlled by voice commands to create location markers and navigate the user while avoiding obstacles. We evaluated three localization implementations, namely, Adaptive Monte Carlo Localization (AMCL), Gmapping and Hector_Slam for this system and compared their navigation accuracy with an ideal path. We collected the data on the paths of AMCL, Gmapping and Hector_Slam and applied statistical tests on the data. The results show that AMCL achieves the lowest mean absolute error while navigating to its goal with an error of 2.15% over the path distance, as compared to Gmapping and Hector in this implementation.
Year
DOI
Venue
2018
10.1109/SARNOF.2018.8720504
2018 IEEE 39th Sarnoff Symposium
Keywords
Field
DocType
AMCL,Autonomous walker,SLAM,Gmapping,Hector,ROS,Voice Recognition
Computer science,Real-time computing,Simultaneous localization and mapping,Distributed computing
Conference
ISBN
Citations 
PageRank 
978-1-5386-6154-3
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Priyank Kashyap100.34
Mahmoud Saleh200.34
Denisolt Shakhbulatov300.34
Ziqian Dong410113.99