Title
Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry.
Abstract
Electroanalytical techniques are useful for detection and identification because the instrumentation is simple and can support a wide variety of assays. One example is cyclic square wave voltammetry (CSWV), a practical detection technique for different classes of compounds including explosives, herbicides/pesticides, industrial compounds, and heavy metals. A key barrier to the widespread application of CSWV for chemical identification is the necessity of a high performance, generalizable classification algorithm. Here, machine and deep learning models were developed for classifying samples based on voltammograms alone. The highest performing models were Long Short-Term Memory (LSTM) and Fully Convolutional Networks (FCNs), depending on the dataset against which performance was assessed. When compared to other algorithms, previously used for classification of CSWV and other similar data, our LSTM and FCN-based neural networks achieve higher sensitivity and specificity with the area under the curve values from receiver operating characteristic (ROC) analyses greater than 0.99 for several datasets. Class activation maps were paired with CSWV scans to assist in understanding the decision-making process of the networks, and their ability to utilize this information was examined. The best-performing models were then successfully applied to new or holdout experimental data. An automated method for processing CSWV data, training machine learning models, and evaluating their prediction performance is described, and the tools generated provide support for the identification of compounds using CSWV from samples in the field.
Year
DOI
Venue
2019
10.3390/s19102392
SENSORS
Keywords
Field
DocType
electrochemical detection,cyclic square wave voltammetry,machine learning techniques
Receiver operating characteristic,Experimental data,Heavy metals,Square wave,Artificial intelligence,Deep learning,Engineering,Voltammetry,Artificial neural network,Machine learning,Instrumentation
Journal
Volume
Issue
ISSN
19
10
1424-8220
Citations 
PageRank 
References 
1
0.37
0
Authors
6