Title
A Tractable Framework for Coverage Analysis of Cellular-Connected UAV Networks
Abstract
Unmanned aerial vehicles (UAVs) have recently found abundant applications in the public and civil domains. To ensure reliable control and navigation, connecting UAVs to controllers via existing cellular network infrastructure, i.e., ground base stations (GBSs), has been proposed as a promising solution. Nevertheless, it is highly challenging to characterize the communication performance of cellular-connected UAVs, due to their unique propagation conditions. This paper proposes a tractable framework for the coverage analysis of cellular-connected UAV networks, which consists of a new blockage model and an effective approach to handle general fading channels. In particular, a line-of-sight (LoS) ball model is proposed to capture the probabilistic propagation in UAV communication systems, and a tractable expression is derived for the Laplace transform of the aggregate interference with general Nakagami fading. This framework leads to a tractable expression for the coverage probability, which in turn helps to investigate the impact of the GBS density. Specifically, a tight lower bound on the optimal density that maximizes the coverage probability is derived. Numerical results show that the proposed LoS ball model is accurate, and the optimal GBS density decreases when the UAV altitude increases.
Year
DOI
Venue
2019
10.1109/ICCW.2019.8756662
2019 IEEE International Conference on Communications Workshops (ICC Workshops)
Keywords
Field
DocType
navigation,cellular network infrastructure,cellular-connected UAVs,coverage analysis,line-of-sight ball model,UAV communication systems,tractable expression,coverage probability,unmanned aerial vehicles,public domains,civil domains,UAV altitude,general Nakagami fading,optimal GBS density,blockage model,Laplace transform
Base station,Mathematical optimization,Fading,Upper and lower bounds,Communication channel,Communications system,Cellular network,Probabilistic logic,Coverage probability,Mathematics
Journal
Volume
ISSN
ISBN
abs/1901.11326
2474-9133
978-1-7281-2374-5
Citations 
PageRank 
References 
0
0.34
10
Authors
4
Name
Order
Citations
PageRank
Xianghao Yu12569.23
Jun Zhang23772190.36
Robert Schober38448488.41
K. B. Letaief411078879.10