Title
Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT Applications.
Abstract
Machine learning-based applications are increasingly prevalent in IoT devices. The power and storage constraints of these devices make it particularly challenging to run modern neural networks, limiting the number of new applications that can be deployed on an IoT system. A number of compression techniques have been proposed, each with its own trade-offs. We propose a hybrid network which combines the strengths of current neural- and tree-based learning techniques in conjunction with ternary quantization, and show a detailed analysis of the associated model design space. Using this hybrid model we obtained a 11.1% reduction in the number of computations, a 52.2% reduction in the model size, and a 30.6% reduction in the overall memory footprint over a state-of-the-art keyword-spotting neural network, with negligible loss in accuracy.
Year
Venue
DocType
2019
arXiv: Learning
Journal
Volume
ISSN
Citations 
abs/1903.01531
2nd Conference on Systems and Machine Learning (SysML), 2019
0
PageRank 
References 
Authors
0.34
20
3
Name
Order
Citations
PageRank
Dibakar Gope1103.29
Ganesh S. Dasika238724.30
Matthew Mattina344128.63