Title
The Impact of RDMA on Agreement.
Abstract
Remote Direct Memory Access (RDMA) is becoming widely available in data centers. This technology allows a process to directly read and write the memory of a remote host, with a mechanism to control access permissions. In this paper, we study the fundamental power of these capabilities. We consider the well-known problem of achieving consensus despite failures, and find that RDMA can improve the inherent trade-off in distributed computing between failure resilience and performance. Specifically, we show that RDMA allows algorithms that simultaneously achieve high resilience and high performance, while traditional algorithms had to choose one or another. With Byzantine failures, we give an algorithm that only requires n \geq 2f_P + 1 processes (where f_P is the maximum number of faulty processes) and decides in two (network) delays in common executions. With crash failures, we give an algorithm that only requires n \geq f_P + 1 processes and also decides in two delays. Both algorithms tolerate a minority of memory failures inherent to RDMA, and they provide safety in asynchronous systems and liveness with standard additional assumptions.
Year
DOI
Venue
2019
10.1145/3293611.3331601
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
Keywords
Field
DocType
byzantine agreement, consensus, fault tolerance, rdma
Psychological resilience,Crash,Asynchronous communication,Computer science,Byzantine fault tolerance,Remote direct memory access,Liveness,Distributed computing
Journal
Volume
ISBN
Citations 
abs/1905.12143
978-1-4503-6217-7
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Marcos Kawazoe Aguilera12519153.60
Naama Ben-David2156.02
Rachid Guerraoui36364430.90
Virendra J. Marathe443428.57
Igor Zablotchi5172.93