Title
High Fidelity Simulation of IEEE 802.11ad in ns-3 Using a Quasi-deterministic Channel Model
Abstract
Supporting high data-rates and a large number of connected devices has always been challenging for wireless technologies operating in the microwave band. Wireless communication in the millimeter band is a promising solution to address this challenge and deliver gigabit throughput and very low latency. However, efficient communication in this band poses a great challenge in terms of radio resource allocation and requires adequate network planning and efficient design of wireless networking protocols. Despite the availability of commercial devices utilizing the IEEE 802.11ad protocol, these devices provide only limited access to the operations of the lower layers of the protocol stack, which hinders in-depth analysis and development of innovative solutions. For these reasons, researchers rely on high-fidelity system-level simulators to understand the interactions and behavior of millimeter-wave communication devices. In this paper, we demonstrate the capabilities of the IEEE 802.11ad model in ns-3. This model allows researchers to study the performance of the IEEE 802.11ad protocol for various deployment settings with high fidelity, using realistic phased antenna arrays and quasi-deterministic channel models. More particularly, we look at the impact of LOS blockage and the use of NLOS paths on link performance. In addition, we show the benefits of deploying multiple access points per room to guarantee gigabit throughput per user. Finally, we evaluate the performance of the IEEE 802.11ad protocol in a typical high-density scenario consisting of a single access point and ten stations.
Year
DOI
Venue
2019
10.1145/3337941.3337946
Proceedings of the 2019 Workshop on Next-Generation Wireless with ns-3
Keywords
DocType
ISBN
60 GHz, IEEE 802.11ad, Millimeter Wave, Q-d Channel, Simulations, WiGig, ns-3
Conference
978-1-4503-7278-7
Citations 
PageRank 
References 
0
0.34
0
Authors
5
Name
Order
Citations
PageRank
Hany Assasa1366.37
Jörg Widmer23924328.38
Tanguy Ropitault374.62
Anuraag Bodi400.68
Nada Golmie544347.24